Interesting Freecell deals Log Out | Topics | Search
Moderators | Register | Edit Profile

Goodsol Forum » Is it Winnable? » Interesting Freecell deals « Previous Next »

  Thread Last Poster Posts Pages Last Post
  ClosedClosed: New threads not accepted on this page        

Author Message
Timothy Aster (Timaster)
Junior Solitaire Player
Username: Timaster

Post Number: 8
Registered: 12-2005
Posted on Monday, January 09, 2006 - 11:15 am:   

The most intense period of Freecell activity seems to have died down a bit over the past 2 or 3 years. Almost every conveivable interesting fact has been unearthed about the first 32,000 deals, but a lot remains unexplored in the extended range to 1 million, to say nothing of the range beyond that (which in FreeCell Pro extends to 8 billion).

Here is something which might stimulate some interest:

Deal 18492 can be played in such a way that all 52 cards are sent to the foundation on the last move, since the four aces appear in a block at the back of one column. This is possible with other layouts as well - it is only necessary to keep the aces covered and arrange the other cards into descending rank order in such a way that uncovering the first ace on the last move releases everything in one go.

No. 18492 is the only deal in the first 32,000 that has all aces in a block at the back of a column, but there are 32 further deals with this characteristic in the range up to 1 million. They are:

57026, 58681, 72832, 87905, 153145, 164723, 172979, 215835, 228373, 229311, 271485, 281060, 281427, 306901, 343261, 410035, 434540, 468091, 484393, 529008, 589248, 682584, 725293, 733336, 874152, 900595, 915838, 928409, 943868, 954120, 960996, 995588.

These all have the potential of a 52-card flourish, though some may be too difficult to arrange into sequence, given that work can only be done in seven columns and all cards down to rank 2 must be put into descending order (or left in free cells).

Would anyone care to post 52-card flourish solutions to some of these?

Tim Aster
Danny A. Jones
Unregistered guest
Posted From: 209.142.12.122
Posted on Tuesday, January 10, 2006 - 1:42 am:   

Tim,

All 32 deals can be solved in 52-card flourishes.

#00057026 Attempt: 1 NumFcs=4 (Hrn Multi) 46 moves
#00058681 Attempt: 1 NumFcs=4 (Hrn Multi) 47 moves
#00072832 Attempt: 1 NumFcs=4 (Hrn Multi) 53 moves
#00087905 Attempt: 1 NumFcs=4 (Hrn Multi) 37 moves
#00153145 Attempt: 1 NumFcs=4 (Hrn Multi) 50 moves
#00164723 Attempt: 1 NumFcs=4 (Hrn Multi) 46 moves
#00172979 Attempt: 1 NumFcs=4 (Hrn Multi) 44 moves
#00215835 Attempt: 1 NumFcs=4 (Hrn Multi) 46 moves
#00228373 Attempt: 1 NumFcs=4 (Hrn Multi) 45 moves
#00229311 Attempt: 1 NumFcs=4 (Hrn Multi) 47 moves
#00271485 Attempt: 1 NumFcs=4 (Hrn Multi) 40 moves
#00281060 Attempt: 1 NumFcs=4 (Hrn Multi) 44 moves
#00281427 Attempt: 1 NumFcs=4 (Hrn Multi) 51 moves
#00306901 Attempt: 1 NumFcs=4 (Hrn Multi) 50 moves
#00343261 Attempt: 1 NumFcs=4 (Hrn Multi) 45 moves
#00410035 Attempt: 1 NumFcs=4 (Hrn Multi) 47 moves
#00434540 Attempt: 1 NumFcs=4 (Hrn Multi) 47 moves
#00468091 Attempt: 1 NumFcs=4 (Hrn Multi) 39 moves
#00484393 Attempt: 1 NumFcs=4 (Hrn Multi) 46 moves
#00529008 Attempt: 1 NumFcs=4 (Hrn Multi) 46 moves
#00589248 Attempt: 1 NumFcs=4 (Hrn Multi) 41 moves
#00682584 Attempt: 1 NumFcs=4 (Hrn Multi) 51 moves
#00725293 Attempt: 1 NumFcs=4 (Hrn Multi) 47 moves
#00733336 Attempt: 1 NumFcs=4 (Hrn Multi) 42 moves
#00874152 Attempt: 1 NumFcs=4 (Hrn Multi) 48 moves
#00900595 Attempt: 1 NumFcs=4 (Hrn Multi) 53 moves
#00915838 Attempt: 1 NumFcs=4 (Hrn Multi) 49 moves
#00928409 Attempt: 1 NumFcs=4 (Hrn Multi) 43 moves
#00943868 Attempt: 1 NumFcs=4 (Hrn Multi) 47 moves
#00954120 Attempt: 1 NumFcs=4 (Hrn Multi) 42 moves
#00960996 Attempt: 1 NumFcs=4 (Hrn Multi) 43 moves
#00995588 Attempt: 1 NumFcs=4 (Hrn Multi) 61 moves

see attachment for solutions.

application/x-zip-compressed52-Card Flourish Solutions
pri_yyy.zip (5.1 k)


(Message approved by admin)
Timothy Aster (Timaster)
Solitaire Player
Username: Timaster

Post Number: 11
Registered: 12-2005
Posted on Tuesday, January 10, 2006 - 12:40 pm:   

Danny -

Well done! I had not tried all of them, as I want to investigate other 52CF configurations (I'm writing that section of my book at present).

Have you come across nos. 35572865, 57325470, 74032324, 80486663, 95729454? These are quite easy to solve with a 52CF, but the arrangement of aces is interesting.

Nos. 30713721, 37954540, 46881776, 89102550, 99862781 have a similar arrangement (four aces with two twos interposed), but in this case the six cards are in the shorter columns and the solution obviously can't release aces at the end. In fact, a whole column is cleared on the first move, which doesn't often happen. No. 89102550 is solvable with zero free cells.

These 10 deals are the only ones in the first 100 million that have this configuration of aces and twos (the interposed twos not obstructing the aces behind them).

Tim
jasonc65
Unregistered guest
Posted From: 205.188.117.67
Posted on Sunday, January 22, 2006 - 6:59 pm:   

The following is a list of all 52CF candidates in the 0-1M range, which have been found by means of a special-purpose search program. It includes of course the ones previously solved by Danny, myself, and others acknowledged on Mike Keller's Freecell FAQ's.

You all may want to try them out.

7239 7321 8536 9993 10331 12387 14150
16371 16508 17502 18088 18492 22574 23190
26852 27251 28692 29268 29640 44767 46170
49600 50369 57026 58681 58973 59529 61459
65456 72832 72915 76196 77841 83623 84057
87905 88211 95358 96982 99099 100517 101011
101241 101472 103220 106328 108132 108503 109674
110439 112109 119120 119692 121587 122372 125919
130104 132553 133250 136869 147640 148982 151547
153145 155126 156217 156497 157927 163032 164584
164723 165074 167667 168614 170410 172979 173033
176870 178438 182631 183966 184978 187976 188590
189495 191625 191767 194365 197116 198278 202871
207583 208145 214021 214065 215835 216215 216947
223791 226023 228373 229311 231017 233376 235646
239008 239688 240489 244025 245892 250189 254647
255013 262309 263635 263922 267002 269258 270605
271485 271717 273760 274366 281050 281060 281427
283473 283990 285100 287286 293973 294163 295434
295658 296681 297551 298688 300408 301021 302532
306534 306901 307202 309812 313306 316577 329375
329855 330903 331662 332182 332967 334256 336601
337257 337844 339040 341763 341976 341995 343261
349387 350846 356363 360203 361366 361666 361916
362927 369393 374471 374921 381004 386895 388563
393805 400557 404195 410035 414133 415395 417850
425389 430441 433957 434540 436052 442841 444173
444700 444876 445324 445689 448103 448555 449248
450707 452388 452996 457339 460520 466979 468091
468363 471640 472700 479028 480015 483118 484393
485782 486218 486718 487511 489868 490048 492881
495497 497307 501516 507729 516670 517101 517850
518728 519543 521292 522340 523645 525039 525831
529008 529556 529925 532054 541479 552372 556172
556728 557993 558095 558674 561954 563791 564055
566533 567117 569138 570863 571529 571758 579459
583121 587406 589233 589248 589686 589971 594913
598401 601252 602332 603160 603307 605471 606506
613969 616986 617122 617886 618014 618016 619429
619813 631413 632566 633021 633631 635491 638043
638157 641792 646875 649525 653962 656065 658268
661174 663192 663251 663613 663839 667313 670485
676327 680696 680973 681282 682584 686386 688228
688803 690889 698791 701132 702970 708531 711267
715579 716939 719392 719626 723615 725209 725293
726869 727425 728986 733336 736295 737851 742250
743547 744394 747617 748912 750514 750692 751758
752156 754463 758375 760843 764156 766475 772503
775777 776652 779530 780230 789301 791151 794285
794536 796850 797261 798056 803431 805776 806448
808081 808830 811197 812655 817863 817929 818862
820462 822443 823788 825790 827733 829864 832932
833634 835150 842363 848126 849663 854381 856593
857258 857363 859629 873226 874152 875021 879181
882096 887128 887935 889138 894695 896228 898292
899166 900595 902541 902689 904294 905074 906711
908326 909886 911104 911663 915773 915838 918344
918944 921581 924628 925154 927348 927391 927577
928409 928551 929058 929114 931222 931430 934758
935900 940642 943868 945055 948066 952559 954120
954240 954975 958061 958313 960996 961420 971349
972754 973056 986310 986412 991000 991656 995588
996622

(Message approved by admin)
Timothy Aster (Timaster)
Solitaire Player
Username: Timaster

Post Number: 13
Registered: 12-2005
Posted on Wednesday, January 25, 2006 - 9:23 pm:   

Jason

Thanks for that list, but I think "you all may want to try them out" is a bit optimistic! It is likely that many are unsolvable with a 52CF. The more the aces are distributed in different columns, the harder it is.

I too have been writing programs to find appropriate ace distributions, but separate programs for each possibility so that I can categorize deals (4 aces together, two pairs in different columns, three in one & one in another etc).

The hardest ones are probably those with all aces in different columns and the only one I've found which is solvable with 52CF is 10224259. I've found others, but I don't know whether they're solvable this way.

I have come up with a custom deal which has aces singly in four columns and which has a 52CF solution:

AC AD AH AS 8S KS KC 7H
JD 2C 2D 2H 5H KH QD 3D
TC 8D QC 8C 9D JC TH 6C
QH 7C 6D 7D 4S TD 8H 5D
4C 6H 9C 4H JH 7S 3S 9H
4D JS 3H 5S QS 5C 2S TS
3C 9S KD 6S

Has anyone got a program that will tell you whether a given custom deal is among the 8,589,934,591 that can be generated by FreeCell Pro? There is only about a 1 in 10^54 chance that it can, for any given deal.

Tim Aster


Danny A. Jones
Unregistered guest
Posted From: 209.142.12.122
Posted on Thursday, January 26, 2006 - 4:09 pm:   

From Jason's list, these deals can be solved as a 52-card flourish in FreeCell.

007239,007321,008536,009993,010331,012387,016371,0 16508,017502
018088,018492,022574,023190,027251,028692,029268,0 29640,044767
046170,049600,057026,058681,058973,059529,061459,0 65456,072832
072915,076196,077841,083623,084057,087905,088211,0 95358,099099
100517,101472,103220,106328,108503,109674,110439,1 12109,119120
119692,121587,125919,130104,132553,136869,147640,1 48982,151547
153145,155126,156217,156497,157927,163032,164584,1 64723,165074
167667,168614,172979,173033,182631,183966,184978,1 87976,191625
191767,194365,197116,198278,202871,207583,208145,2 14021,214065
215835,216215,223791,226023,228373,229311,231017,2 33376,235646
239008,239688,244025,250189,254647,263635,263922,2 67002,269258
270605,271485,271717,274366,281060,281427,283990,2 85100,287286
293973,294163,295434,295658,296681,298688,300408,3 01021,302532
306534,306901,307202,313306,316577,329375,329855,3 30903,336601
337257,337844,339040,341763,341976,341995,343261,3 49387,350846
356363,360203,361366,361666,361916,362927,369393,3 74921,386895
388563,400557,404195,410035,415395,417850,425389,4 30441,433957
434540,436052,442841,444173,444700,444876,445324,4 45689,448555
450707,452388,466979,468091,468363,471640,472700,4 80015,484393
485782,487511,489868,495497,507729,516670,517101,5 17850,519543
521292,522340,523645,525831,529008,529556,529925,5 32054,541479
552372,556172,557993,558095,561954,563791,564055,5 66533,567117
569138,570863,571529,571758,579459,587406,589233,5 89248,589686
589971,594913,602332,603160,603307,605471,606506,6 13969,616986
617886,618016,619429,619813,632566,633021,635491,6 38043,638157
641792,653962,656065,658268,661174,663192,663613,6 63839,667313
670485,676327,680696,680973,681282,682584,688228,6 88803,690889
701132,702970,708531,711267,715579,716939,719626,7 23615,725293
726869,727425,733336,736295,737851,742250,743547,7 44394,748912
750514,750692,754463,758375,760843,764156,766475,7 75777,776652
779530,780230,789301,791151,794285,794536,796850,7 97261,803431
806448,808081,808830,811197,812655,817863,817929,8 18862,820462
822443,823788,825790,829864,832932,833634,835150,8 42363,848126
849663,854381,856593,857258,857363,859629,873226,8 74152,875021
879181,882096,887128,887935,889138,894695,899166,9 00595,902541
902689,905074,906711,908326,909886,911104,911663,9 15773,915838
918944,921581,924628,927348,927391,927577,928409,9 28551,929114
931222,931430,934758,940642,943868,952559,954120,9 54240,954975
958061,958313,960996,961420,971349,972754,973056,9 86310,986412
991656,995588,996622


(Message approved by admin)
Timothy Aster (Timaster)
Solitaire Player
Username: Timaster

Post Number: 14
Registered: 12-2005
Posted on Friday, January 27, 2006 - 4:13 pm:   

Danny -

Thanks, very useful information (poss examples for chapter 6?).

The following deals (up to 10 million) have aces at the back in four columns and have the potential for 52CF solution. I know the first is 52CF-solvable, are the others? (no need to post solutions, just yes/no).

10224259
23155556
25183286
26566971
27738107
27891050
44020529
45082283
64139445
67902524
86420498
86834803
89919491

Tim

Timothy Aster (Timaster)
Solitaire Player
Username: Timaster

Post Number: 15
Registered: 12-2005
Posted on Friday, January 27, 2006 - 4:17 pm:   

Correction to previous post:

Deals listed are those with given characteristic up to 100 million (not 10 million)

TA

Topics | Last Day | Last Week | Tree View | Search | Help/Instructions | Program Credits Administration